【中国发明,中国发明授权】水印图像的嵌入方法

有权-审定授权 中国

申请号:
CN201210281560.X
专利权人:
江苏技术师范学院
授权公告日/公开日:
2015.02.11
专利有效期:
2011.05.26-2031.05.26
技术分类:
G06:计算;推算;计数
历史运营情况:
著录变更
价值度指数:
59.0分
交易方式:
转让
价格:
面议
224 0

发布人

江苏理工学院

联系人何老师

0519-88238869
302910554
13151263266
  • 专利信息&法律状态
  • 专利自评
  • 专利技术文档
  • 价值度指数
  • 发明人阵容
  • 交易流程

著录项

申请号
CN201210281560.X
申请日
20110526
公开/公告号
CN102880997A
公开/公告日
20130116
申请/专利权人
[江苏技术师范学院]
发明/设计人
[王海峰, 章怡]
主分类号
G06T1/00
IPC分类号
C12N 9/0008(2013.01) C12N 9/16
CPC分类号
C12N 9/0008(2013.01) C12N 9/16(2013.01)
分案申请地址
国省代码
中国,CN,江苏(32)
颁证日
G06T1/00
代理人
[汤志和]

摘要

本发明涉及一种适于解决水印算法中透明性与鲁棒性相矛盾问题的灰度水印图像的嵌入方法包括:对原始载体图像分块并进行DCT变换,利用模板将系数分低、中、高频三个数据块,组成新矩阵后进行SVD分解,计算分块能量比,确定适合嵌入的最佳分块位置;将灰度水印信息依据能量比自适应地嵌入到低频分块的奇异值中。

法律状态

法律状态公告日 20150211
法律状态 授权
法律状态信息 授权
法律状态公告日 20150107
法律状态 著录事项变更
法律状态信息 著录事项变更
IPC(主分类):G06T 1/00
变更事项:申请人
变更前:江苏技术师范学院
变更后:江苏理工学院
变更事项:地址
变更前:213000 江苏省常州市钟楼区中吴大道1801号
变更后:213015 江苏省常州市钟楼区中吴大道1801号
法律状态公告日 20130227
法律状态 实质审查的生效
法律状态信息 实质审查的生效
IPC(主分类):G06T 1/00
申请日:20110526
法律状态公告日 20130116
法律状态 公开
法律状态信息 公开
暂无数据

权利要求

权利要求数量(2

独立权利要求数量(2

1.一种水印图像的嵌入方法,包括如下步骤:

(1)水印图像的预处理:将水印图像进行混沌序列置乱,并将该水印图像变形成1行n列的图像序列,即n个图像信息;

(2)嵌入位置的选择:将原始载体图像由矩阵为                                                                 分割成相应个数的互不覆盖的8×8图像块,对各8×8图像块进行DCT变换,根据8×8模板取出各8×8图像块中对应的低频与高频数据,并将所述低频与高频数据分别组成3×3的矩阵A和6×6的矩阵 B,对矩阵A、B进行奇异值分解并求其矩阵范数,求解各8×8图像块的能量比g,能量比 ,其中: 为所述矩阵B的首个奇异值, 为所述矩阵A的首个奇异值;找出与能量比为前n个最大值所对应的8×8图像块;

(3)水印嵌入的数据选择:水印信息即所述n个图像信息,依次一一对应地选择在按所述能量比g大小排列的n个8×8图像块的所述矩阵A的奇异值分解的首个值中自适应地嵌入,嵌入强度随图像块的能量比自动调节;

(4)对嵌入水印信息的各8×8图像块进行DCT逆变换,得到含水印信息的图像;

在进行上述步骤(3)的水印嵌入的数据选择时:逐一对n个8×8图像的矩阵A进行奇异值分解的方法为:  ,式中 , , ,U和V都是正交矩阵,S为对角阵;

取出S对角矩阵首个奇异值并嵌入水印 ,嵌入公式   (   ) ;嵌入强度K随块能量比g自动调节,以实现所述自适应地嵌入,其公式为  , , 式中 为基本因子,  其取值条件需保证嵌入含水印信息的峰值信噪比大于36db; m为原始图像分割成所述8×8图像块的总块数;

将新奇异值代入 ,求出含水印信息的低频数据 ,并将数据送回相应的8×8图像块中的对应位置。

2.一种水印图像的嵌入和提取方法,其特征在于:

所述水印图像的嵌入方法包括如下步骤:

(1)水印图像的预处理:将水印图像进行混沌序列置乱,并将该水印图像变形成1行n列的图像序列,即n个图像信息;

(2)嵌入位置的选择:将原始载体图像由矩阵为 分割成相应个数的互不覆盖的8×8图像块,对各8×8图像块进行DCT变换,根据8×8模板取出各8×8图像块中对应的低频与高频数据,并将所述低频与高频数据分别组成3×3的矩阵A和6×6的矩阵 B,对矩阵A、B进行奇异值分解并求其矩阵范数,求解各8×8图像块的能量比g,能量比 ,其中: 为所述矩阵B的首个奇异值, 为所述矩阵A的首个奇异值;找出与能量比为前n个最大值所对应的8×8图像块;

(3)水印嵌入的数据选择:水印信息即所述n个图像信息,依次一一对应地选择在按所述能量比g大小排列的n个8×8图像块的所述矩阵A的奇异值分解的首个值中自适应地嵌入,嵌入强度随图像块的能量比自动调节;

(4)对嵌入水印信息的各8×8图像块进行DCT逆变换,得到含水印信息的图像;

在进行上述步骤(3)的水印嵌入的数据选择时:逐一对n个8×8图像的矩阵A进行奇异值分解的方法为:  ,式中 , , ,U和V都是正交矩阵,S为对角阵;

取出S对角矩阵首个奇异值并嵌入水印 ,嵌入公式   (   ) ;嵌入强度K随块能量比g自动调节,以实现所述自适应地嵌入,其公式为  , , 式中 为基本因子,  其取值条件需保证嵌入含水印信息的峰值信噪比大于36db; m为原始图像分割成所述8×8图像块的总块数;

将新奇异值代入 ,求出含水印信息的低频数据 ,并将数据送回相应的8×8图像块中的对应位置;

所述水印图像的提取方法,包括如下步骤: 

 (a)对矩阵为 的原始载体图像和矩阵为 的待检含水印图像分别分割成8×8图像块,并对各8×8图像块进行DCT变换,根据8×8模板从各8×8图像块中取出对应的低频与高频数据,并对原始载体图像中的各8×8图像块内的低频与高频数据分别构成3×3的矩阵 与6×6的矩阵 ,对水印图像中的各8×8图像块内的低频与高频数据分别构成矩阵3×3的矩阵 与6×6的矩阵 ,对所述矩阵 、 分别进行奇异值分解: , ;

(b)求解各8×8图像块中的水印信息变化值 , ,m为原始图像分割成所述8×8图像块的总块数;

(c)从m个8×8图像块中,找出与能量比为前n个最大值相对应的8×8图像块,即找出n个8×8图像块;

(d)所述的n个8×8图像块之一的能量比与所述m个的8×8图像块之一的能量比分别记为 与 , , ;根据:

若 ,则图像灰度值 ,得出n个图像信息,K为嵌入强度;

(e)将所述的n个图像信息按照各图像信息所在的8×8图像块的能量比大小依序排列,得出1行n列图像序列;

(f)依据混沌置乱算法的逆运算将上述1行n列图像序列恢复出水印图像;

所述步骤(a)中:从8×8模板设置的低频与高频区系数中取出1×9的数据A(9)、1×36的数据B(36)数组,将此数组变形成3×3的方阵 、 ,再对方阵 、 进行SVD分解运算,取出奇异值对角矩阵中的首个值。

一种水印图像的嵌入方法,包括如下步骤: (1)水印图像的预处理:将水印图像进行混沌序列置乱,并将该水印图像变形成1行n列的图像序列,即n个图像信息; (2)嵌入位置的选择:将原始载体图像由矩阵为                                                                 分割成相应个数的互不覆盖的8×8图像块,对各8×8图像块进行DCT变换,根据8×8模板取出各8×8图像块中对应的低频与高频数据,并将所述低频与高频数据分别组成3×3的矩阵A和6×6的矩阵 B,对矩阵A、B进行奇异值分解并求其矩阵范数,求解各8×8图像块的能量比g,能量比,其中:为所述矩阵B的首个奇异值,为所述矩阵A的首个奇异值;找出与能量比为前n个最大值所对应的8×8图像块; (3)水印嵌入的数据选择:水印信息即所述n个图像信息,依次一一对应地选择在按所述能量比g大小排列的n个8×8图像块的所述矩阵A的奇异值分解的首个值中自适应地嵌入,嵌入强度随图像块的能量比自动调节; (4)对嵌入水印信息的各8×8图像块进行DCT逆变换,得到含水印信息的图像; 在进行上述步骤(3)的水印嵌入的数据选择时:逐一对n个8×8图像的矩阵A进行奇异值分解的方法为: ,式中,,,U和V都是正交矩阵,S为对角阵; 取出S对角矩阵首个奇异值并嵌入水印 ,嵌入公式  (  ) ;嵌入强度K随块能量比g自动调节,以实现所述自适应地嵌入,其公式为 ,, 式中为基本因子,  其取值条件需保证嵌入含水印信息的峰值信噪比大于36db; m为原始图像分割成所述8×8图像块的总块数; 将新奇异值代入,求出含水印信息的低频数据,并将数据送回相应的8×8图像块中的对应位置。 一种水印图像的嵌入和提取方法,其特征在于: 所述水印图像的嵌入方法包括如下步骤: (2)嵌入位置的选择:将原始载体图像由矩阵为分割成相应个数的互不覆盖的8×8图像块,对各8×8图像块进行DCT变换,根据8×8模板取出各8×8图像块中对应的低频与高频数据,并将所述低频与高频数据分别组成3×3的矩阵A和6×6的矩阵 B,对矩阵A、B进行奇异值分解并求其矩阵范数,求解各8×8图像块的能量比g,能量比,其中:为所述矩阵B的首个奇异值,为所述矩阵A的首个奇异值;找出与能量比为前n个最大值所对应的8×8图像块; (3)水印嵌入的数据选择:水印信息即所述n个图像信息,依次一一对应地选择在按所述能量比g大小排列的n个8×8图像块的所述矩阵A的奇异值分解的首个值中自适应地嵌入,嵌入强度随图像块的能量比自动调节; 在进行上述步骤(3)的水印嵌入的数据选择时:逐一对n个8×8图像的矩阵A进行奇异值分解的方法为: ,式中,,,U和V都是正交矩阵,S为对角阵; 取出S对角矩阵首个奇异值并嵌入水印 ,嵌入公式  (  ) ;嵌入强度K随块能量比g自动调节,以实现所述自适应地嵌入,其公式为 ,, 式中为基本因子,  其取值条件需保证嵌入含水印信息的峰值信噪比大于36db; m为原始图像分割成所述8×8图像块的总块数; 将新奇异值代入,求出含水印信息的低频数据,并将数据送回相应的8×8图像块中的对应位置; 所述水印图像的提取方法,包括如下步骤:   (a)对矩阵为的原始载体图像和矩阵为的待检含水印图像分别分割成8×8图像块,并对各8×8图像块进行DCT变换,根据8×8模板从各8×8图像块中取出对应的低频与高频数据,并对原始载体图像中的各8×8图像块内的低频与高频数据分别构成3×3的矩阵与6×6的矩阵,对水印图像中的各8×8图像块内的低频与高频数据分别构成矩阵3×3的矩阵与6×6的矩阵,对所述矩阵、分别进行奇异值分解:,; (b)求解各8×8图像块中的水印信息变化值,,m为原始图像分割成所述8×8图像块的总块数; (c)从m个8×8图像块中,找出与能量比为前n个最大值相对应的8×8图像块,即找出n个8×8图像块; (d)所述的n个8×8图像块之一的能量比与所述m个的8×8图像块之一的能量比分别记为与,,;根据: 若,则图像灰度值,得出n个图像信息,K为嵌入强度; (e)将所述的n个图像信息按照各图像信息所在的8×8图像块的能量比大小依序排列,得出1行n列图像序列; (f)依据混沌置乱算法的逆运算将上述1行n列图像序列恢复出水印图像; 所述步骤(a)中:从8×8模板设置的低频与高频区系数中取出1×9的数据A(9)、1×36的数据B(36)数组,将此数组变形成3×3的方阵、,再对方阵、进行SVD分解运算,取出奇异值对角矩阵中的首个值。

说明书

技术领域

本发明涉及图像处理的技术领域,具体是一种水印图像的嵌入方法。 

背景技术

随着数字多媒体技术以及因特网技术的飞速发展,多媒体产品的安全问题成为目前一个相当重要而又富有挑战性的研究课题。数字水印技术是实现数字产品版权保护的一种潜在的有效方法,目前已成为信息安全领域的一个研究热点,也是信息隐藏研究领域的一种重要分支,数字水印正是在这样的背景下应运而生,并成为目前学术界研究的一个前沿热门方向。 

鉴于目前大多数商标或版权标志都是以灰度图像或彩色图像表示的,因此如何嵌入灰度水印图像的研究具有很重要的实用价值,也更有意义,更加符合实际需求。由于信息隐藏容量的限制,采用灰度图像作为图像水印进行嵌入不但嵌入难度高,而且难于实现盲提取,在提高嵌入水印的鲁棒性的同时,也降低了其不可感知性,所以这方面的研究还不是很多。 

透明性与稳健性是数字水印技术两个基本特性。一般嵌入含水印的图像若透明性比较好(即PSNR比较大)则稳健性比较差(检测的相关系数NC比较小),它们是相互矛盾的,透明性与鲁棒性都与水印的嵌入位置和嵌入强度息息相关。本发明就是为解决这一技术难题,结合图像能量分析在合适的位置嵌入尽可能强的水印信息,即在同一嵌入强度下提高峰值信噪比的同时又要提高检测相关系数NC。 

根据数字水印的作用可以将数字水印分为鲁棒水印、脆弱水印和半脆弱水印。 

(1)鲁棒水印的主要目的在于保护数字作品的版权,它要求嵌入后的水印能够经受各种常用的信号处理操作,包括无意的或恶意的处理,如有损压缩、滤波、平滑、裁减、几何变形等等。鲁棒水印在经过各种处理后,只要宿主图像没有被破坏到不可使用的程度。都应能够检测出来。因此该类水印的稳健性要求较高。 

(2)脆弱水印主要用于保护数字作品的完整性,鉴别数字作品的真伪。 

(3)半脆弱水印要求能够抵抗一定程度的有益的信号处理操作,如JPEG压缩等,该水印比脆弱水印稍鲁棒些。 

  

发明内容
附图说明

为了使本发明的内容更容易被清楚的理解,下面根据的具体实施例并结合附图,对本发明作进一步详细的说明,其中 

图1为实施例中的水印图像。

图2为8×8模板。 

图3为水印图像的嵌入流程图; 

图4为水印图像的提取流程图; 

图5为将含水印的图像分别进行品质因子为90、75、50、30、10的压缩的结果示意图; 

图6为对含水印的原始图像分别进行加噪、滤波攻击实验的结果示意图; 

图7为对含水印的原始图像分别进行剪切、旋转、缩放攻击实验的结果示意图。 

  

具体实施方式

价值度评估

技术价值

经济价值

法律价值

0 0 0

59.0

0 50 75 100
0~50 50~75 75~100 价值较低 中等价值 价值较高

专利价值度是通过科学的评估模

型对专利价值进行量化的结果,

基于专利大数据针对专利总体特

征指标利用计算机自动化技术对

待评估专利进行高效、智能化的

分析,从技术、经济和法律价值

三个层面构建专利价值评估体

系,可以有效提升专利价值评估

的质量和效率。

总评:59.0


该专利价值中等 (仅供参考)

        该专利的技术、经济、法律价值经系统自动评估后的总评得分处于平均水平,可以重点研究利用其技术价值,根据法律价值的评估结果选择合适的使用借鉴方式。
        本专利文献中包含【1 个实施例】、【1 个技术分类】,从一定程度上而言上述指标的数值越大可以反映出所述专利的技术保护及应用范围越广。 【被引用次数1 次】专利被引次数越多越能能够体现出该专利在相关技术领域研发中所发挥的基础性作用,代表着专利公开的内容有更多的产业利用价值。 【专利权的维持时间8 年】专利权的维持时间越长,其价值对于权利人而言越高。

技术价值    33.0

该指标主要从专利申请的著录信息、法律事件等内容中挖掘其技术价值,专利类型、独立权利要求数量、无效请求次数等内容均可反映出专利的技术性价值。 技术创新是专利申请的核心,若您需要进行技术借鉴或寻找可合作的项目,推荐您重点关注该指标。

部分指标包括:

授权周期(发明)

45 个月

独立权利要求数量

1 个

从属权利要求数量

0 个

说明书页数

7 页

实施例个数

1 个

发明人数量

2 个

被引用次数

1 次

引用文献数量

1 个

优先权个数

0 个

技术分类数量

1 个

无效请求次数

0 个

分案子案个数

1 个

同族专利数

0 个

专利获奖情况

保密专利的解密

经济价值    7.0

该指标主要指示了专利技术在商品化、产业化及市场化过程中可能带来的预期利益。 专利技术只有转化成生产力才能体现其经济价值,专利技术的许可、转让、质押次数等指标均是其经济价值的表征。 因此,若您希望找到行业内的运用广泛的热点专利技术及侵权诉讼中的涉案专利,推荐您重点关注该指标。

部分指标包括:

申请人数量

1

申请人类型

院校

许可备案

0 次

权利质押

0 次

权利转移

0 个

海关备案

法律价值    19.0

该指标主要从专利权的稳定性角度评议其价值。专利权是一种垄断权,但其在法律保护的期间和范围内才有效。 专利权的存续时间、当前的法律状态可反映出其法律价值。故而,若您准备找寻权属稳定且专利权人非常重视的专利技术,推荐您关注该指标。

部分指标包括:

存活期/维持时间

8

法律状态

有权-审定授权

专利交易双方达成协议后,可委托平台办理专利交易手续,平台将指定专利代理事务所办理手续。

委托办理交易手续流程

  • 01 签订专利代理委托书

    客户与平台签订专利代理委托书,委托平台办理专利权转让手续

  • 02 核实专利基本信息

    核实专利的申请日、专利号、申请号、专利权有效期等著录信息

  • 03 制作纸质材料

    制作纸质材料证明,材料包括专利交易合同、著录项目变更申报书

  • 04 专利权人/申请人盖章

    为保证专利权变更手续快速推进,请专利权人、申请人尽快对相关材料盖章并寄回

  • 05 制作电子材料

    制作电子材料,并按国知局规定的格式提交

  • 06 收取电子版手续合格通知书

    1~2个月可收到电子版手续合格通知书,平台在1~2个月内收到通知书后会通知客户,专利权的转让在发布通知书之日起生效

  • 07 申请纸质版手续合格通知书

    若客户需要纸质通知书,平台向国知局申请后,在1~2周获得纸质通知书并交给客户